Search results for "COSMOLOGICAL CONSTANT"

showing 10 items of 54 documents

Quantum Effects in Black Holes from the Schwarzschild Black String?

2007

The holographic conjecture for black holes localized on a 3-brane in Randall-Sundrum braneworld models RS2 predicts the existence of a classical 5D time dependent solution dual to a 4D evaporating black hole. After briefly reviewing recent criticism and presenting some difficulties in the holographic interpretation of the Gregory-Laflamme instability, we simulate some basic features of such a solution by studying null geodesics of the Schwarzschild black string, in particular those propagating nontrivially in the bulk, and using holographic arguments.

High Energy Physics - TheoryPhysicsPhysics and Astronomy (miscellaneous)GeodesicAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyCosmologyBlack holeTheoretical physicsGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Randall–Sundrum modelBlack stringSchwarzschild metricSchwarzschild radius
researchProduct

Observational effects of varying speed of light in quadratic gravity cosmological models

2017

We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant ([Formula: see text]) may become variable in that local frame. For theories of the form [Formula: see text], this variation in [Formula: see text] has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae t…

PhysicsGravity (chemistry)Physics and Astronomy (miscellaneous)010308 nuclear & particles physicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Cosmological constantAffine connectionType (model theory)01 natural sciencesGeneral Relativity and Quantum Cosmology0103 physical sciencesSpeed of lightConnection (algebraic framework)010306 general physicsConstant (mathematics)Luminosity distanceMathematical physics
researchProduct

Non-Gaussian Signatures in the Lens Deformations of the CMB Sky. A New Ray-Tracing Procedure

2003

We work in the framework of an inflationary cold dark matter universe with cosmological constant, in which the cosmological inhomogeneities are considered as gravitational lenses for the CMB photons. This lensing deforms the angular distribution of the CMB maps in such a way that the induced deformations are not Gaussian. Our main goal is the estimation of the deviations with respect to Gaussianity appeared in the distribution of deformations. In the new approach used in this paper, matter is evolved with a particle-mesh N-body code and, then, an useful ray-tracing technique designed to calculate the correlations of the lens deformations induced by nonlinear structures is applied. Our appro…

PhysicsNuclear and High Energy PhysicsCold dark matterGaussianCosmic microwave backgroundAstrophysics (astro-ph)FOS: Physical sciencesCosmological constantAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicslaw.inventionComputational physicsRay tracing (physics)Lens (optics)Gravitationsymbols.namesakeClassical mechanicslawObservational cosmologysymbols
researchProduct

Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation

2008

We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian renormalization group equation. We begin by discussing various cutoff schemes, i.e. ways of implementing the Wilsonian cutoff procedure. We compare the beta functions of the gravitational couplings obtained with different schemes, studying first the contribution of matter fields and then the so-called Einstein-Hilbert truncation, where only the cosmological constant and Newton's constant are retained. In this context we make connection with…

High Energy Physics - TheoryPhysicsAsymptotic safety in quantum gravityGeneral Physics and AstronomyFOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupFixed pointGeneral Relativity and Quantum CosmologyGravitationHigh Energy Physics - Theory (hep-th)Quantum gravityConstant (mathematics)Scalar curvatureMathematical physics
researchProduct

Asymptotic Safety, Fractals, and Cosmology

2013

These lecture notes introduce the basic ideas of the asymptotic safety approach to quantum Einstein gravity (QEG). In particular they provide the background for recent work on the possibly multi-fractal structure of the QEG space-times. Implications of asymptotic safety for the cosmology of the early Universe are also discussed.

PhysicsSpace timemedia_common.quotation_subjectAsymptotic safety in quantum gravityCosmological constantCosmologyUniverseGeneral Relativity and Quantum CosmologyTheoretical physicssymbols.namesakeEffective field theorysymbolsQuantum gravityEinsteinmedia_common
researchProduct

Running Newton Constant, Improved Gravitational Actions, and Galaxy Rotation Curves

2004

A renormalization group (RG) improvement of the Einstein-Hilbert action is performed which promotes Newton's constant and the cosmological constant to scalar functions on spacetime. They arise from solutions of an exact RG equation by means of a ``cutoff identification'' which associates RG scales to the points of spacetime. The resulting modified Einstein equations for spherically symmetric, static spacetimes are derived and analyzed in detail. The modifications of the Newtonian limit due to the RG evolution are obtained for the general case. As an application, the viability of a scenario is investigated where strong quantum effects in the infrared cause Newton's constant to grow at large …

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsAstrophysics (astro-ph)Dark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Cosmological constantNewtonian limitAstrophysicsGeneral Relativity and Quantum CosmologyGravitationsymbols.namesakeGeneral Relativity and Quantum CosmologyClassical mechanicsHigh Energy Physics - Theory (hep-th)Einstein field equationssymbolsSchwarzschild metricWeyl transformationGalaxy rotation curveMathematical physics
researchProduct

A class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior

2002

Motivated by the conjecture that the cosmological constant problem could be solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function F(k, V) of the Euclidean space-time volume V. A partial differential equation governing its dependence on the scale k is derived and its fixed point is analyzed. For the more restrictive truncation of theory space where F(k, V) is of the form V+V ln V, V+V^2, and V+\sqrt{V}, respectively, the renormalization group equations for the running coupling…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsFOS: Physical sciencesOrder (ring theory)General Relativity and Quantum Cosmology (gr-qc)Cosmological constantRenormalization groupFixed pointSpace (mathematics)General Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanicsQuantum gravityEffective actionCosmological constant problemPhysical Review D
researchProduct

On the Super Higgs Effect in Extended Supergravity

2002

We consider the reduction of supersymmetry in N-extended four dimensional supergravity via the super Higgs mechanism in theories without cosmological constant. We provide an analysis largely based on the properties of long and short multiplets of Poincare' supersymmetry. Examples of the super Higgs phenomenon are realized in spontaneously broken N=8 supergravity through the Scherk-Schwarz mechanism and in superstring compactification in presence of brane fluxes. In many models the massive vectors count the difference in number of the translation isometries of the scalar sigma-model geometries in the broken and unbroken phase.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsCompactification (physics)SupergravityHigh Energy Physics::PhenomenologyFOS: Physical sciencesSuperstring theoryFísicaSupersymmetryCosmological constantsymbols.namesakeTheoretical physicsHigh Energy Physics::TheoryHigh Energy Physics - Theory (hep-th)symbolsHiggs bosonBraneHiggs mechanism
researchProduct

Why the Cosmological Constant Seems to Hardly Care About Quantum Vacuum Fluctuations: Surprises From Background Independent Coarse Graining

2020

International audience; Background Independence is a sine qua non for every satisfactory theory of Quantum Gravity. In particular if one tries to establish a corresponding notion of Wilsonian renormalization, or coarse graining, it presents a major conceptual and technical difficulty usually. In this paper we adopt the approach of the gravitational Effective Average Action and demonstrate that generically coarse graining in Quantum Gravity and in standard field theories on a non-dynamical spacetime are profoundly different. By means of a concrete example, which in connection with the cosmological constant problem is also interesting in its own right, we show that the surprising and sometime…

Materials Science (miscellaneous)Background independent quantum gravityBiophysicsAsymptotic safety in quantum gravityGeneral Physics and AstronomyCosmological constantnonperturbativeasymptotic safety01 natural sciencesrenormalizationGravitationRenormalizationTheoretical physicsVacuum energyFunctional renormalisation group0103 physical sciencesultravioletBackground independencePhysical and Theoretical Chemistry010306 general physicsMathematical PhysicsPhysicsenergy: highcosmological constantbackgroundfunctional renormalization grouplcsh:QC1-999fluctuation: vacuumspace-timegravitationquantum gravity[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Quantum gravityrenormalisation grouprenormalization grouplcsh:PhysicsCosmological constant problem
researchProduct

Cosmology with self-adjusting vacuum energy density from a renormalization group fixed point

2001

Cosmologies with a time dependent Newton constant and cosmological constant are investigated. The scale dependence of $G$ and $\Lambda$ is governed by a set of renormalization group equations which is coupled to Einstein's equation in a consistent way. The existence of an infrared attractive renormalization group fixed point is postulated, and the cosmological implications of this assumption are explored. It turns out that in the late Universe the vacuum energy density is automatically adjusted so as to equal precisely the matter energy density, and that the deceleration parameter approaches $q = -1/4$. This scenario might explain the data from recent observations of high redshift type Ia S…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsDeceleration parametermedia_common.quotation_subjectCosmic microwave backgroundAstrophysics (astro-ph)FOS: Physical sciencesAstrophysicsCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsRenormalization groupAstrophysicsGeneral Relativity and Quantum CosmologyCosmologyUniverseHigh Energy Physics - PhenomenologyGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Vacuum energyHigh Energy Physics - Theory (hep-th)Mathematical physicsmedia_commonQuintessencePhysics Letters B
researchProduct